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CONTINUAL-DISCRETE MODELLIN~ OF A ~ULTIC~MPONENT LAMINAR BODY BY USING A 
SYSTEM OF TWO-DIMENSIONAL CONTINUA~~ 

T.A. PRIBYLHVA 

A method is considered for constructing continual-discrete models 
of multicomponent layered bodies by using a system consisting of an 
arbitrary number of two-dimensional continua with finite intervals 
between them. Consistency relationships are presented for the 
fundamental kinematic, deformation, and dynamic parameters which enable 
rheological relationships to be obtained for the body as a whole taking 
the properties and nature of the interaction of the individual 
components into account. An example of the modelling of a thin laminar 
elastic body is examined. Methods for modelling a biological membrane 
are discussed. 

PhysicaL objects exist for #hich a direct description is 
impossible by methods of the mechanics of three-dimensional continuous 
media, or is insufficiently effective because the physical properties 
of the object are discrete in one of the directions, i.e., the 
requirements for the continuity hypothesis /l/ are not satisfied in 
this direction. The object here posssesses fairly continuous 
properties in the other two directions and allows of a continual 
description. 

Among the: discrete objects in the transverse direction is the 
shell of a live cell, a biological membrane, say, consisting of several 
layers of macromolecules where the individual layers include molecules 
of different species. Moreover, a broad class of laminar and 
stratified bodies exists, whose properties in the transverse direction 
can possibly be described by a discrete set of parameters. 

In. a number of papers t/2-7/, for example) the concept has been 
introduced of a two-dimensional continuum (a material surface 
possessing mass1 that is characterized by appropriate kinematic, 
dynamic, and energy parameters. The ideal of modelling multicompone~t 
laminar bodies by using systems of two-dimensional continua f8/ is 
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natural*. (*See also: Pribyleva, T.A. Investigations in Biomechanics. 
Model of a multisheet continuum: kinematics and mass balance. Report 
2555, Moscow Univ. Mechanics.Inst., 1981). Certain elements of this 
approach are elucidated in 19, lo/. 

1. Construction of the ftdndmentat conti- and ndtisheet system. 
A two-dimensional continuum (a material surface) is understood to be an infinitely thin 

physical object satisfying the requirements of the continuity hypothesis /l/ in the longitudi- 
nal direction. 

The fundamental continuum K is set in correspondence with a three-dimensional body Z as 
a whole in continual discrete modelling. The geometric surface on which the continuum lies 
is called the fundamental surface and is denoted by the same symbol I(. The surface I( (Fig. 
1) passes, by definition, through the centre of mass of parts dZ cut out of the body Z by 
cylindrical elements dv with generators, normal to the surface K. It can be shown that the 
surface K (given implicitly) exists and is .sufficiently smooth under the condition of satisfy- 
ing the requirements of the continuity hypothesis for the material of the body Z in the 
longitudinal direction. 

Fig.1 

4 

Fig.3 
The cylindrical elenent dv cuts an element da (Fig.11 out of the continuum K that, by 

definition, models the part dZ. The appropriate characteristics of the element C&J and the part 
dZ such as the mass, location and velocity of the centre of mass, the total electrical charge, 
the internal energy, entropy, etc. are here in agreement. The system of forces and moments 
acting on the element da should be equivalent to the analogous system of forces and moments 
acting on the part dZ. Let us assume that the body Z is formed N components 2, by which we 
mean, by definition, the individual layers or separate parts of molecules (components) in the 
layer. For example, the body shown schematically in Fig.2 consists of 4 components. 

Denote by dZi the part of the components &cut out by a cylindrical element dv with 
generatrix normal to the surface K. A multisheet system of two-dimensional continua is con- 
structed on the base of the fundamental surface K as follows: a two-dimensional continuum 
(sheet) Kt lying on the surface Ki passing through the centre of mass of the parts d& is set 
in correspondence to each component &.The part dal of the continuum Ki included within 
the cylindrical element dv (Fig.11 models, by definition, the part d.2, of the component Zi, 
where corresponding characteristics of the elements dot and the parts dZ1 agree; analogous 
systems of forces and moments should be equivalent (exactly as in the construction of the 
fundamental continuum K). 

In other words, when constructing the fundamental continuum, the mass of the whole object 
Z "is removed" to one surfacefliand when constructing the multisheet system the mass of the 
individual components Zr (in particular, of the separate layers) is removed to the different 
surfaces K1, respectively. A set of elements dai (Fig.11 with finite intervals between 
them is the elementary formation in a multisheet system which is different in principle from 
the mechanics of three-dimensional mixtures. 

We note that separation of a three-dimensional object into layers can be provisional, 
where the accuracy of the description by using a multisheet system is increased as the number 
of layers increases. 

Some of the continuaKican lie on one surface and be shifted with respect to another. 
This enables surface diffusion to be modelled. 

A general rule for establishing the correspondence between characteristics of the body 
Z and the parameters of the fundamental continuum K as well as the components Z, and the 
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sheets Ki is postulated by introducing the continual discrete description. 
The parameters characterizing the properties and interaction of the components Z, are 

given initially on different surfaces Ki and are then reduced to a single coordinate system 
coupled to the surface K. 

Underlying the continual-discrete modelling method are consistency relationships that 
connect the parameters of the continuum K to the parameters of the sheets Ki. Taken into 
account, in particular, in the derivation of the consistency relationships are the transverse 
deformations of the layers, the relative longitudinal motion of the layers and their 
components, and the mass transfer between components and with the external medium, 

We emphasize that the balance equations for the continua K and Ki are a trivial extension 
of the equations presented in /2-T/. The difficulty indeed is to obtain consistency relation- 
ships and in constructing systems of equations for a smaller number of variables by using 
them (as in the mechanics of three-dimensional mixtures also). 

A general method is described below for constructing a multisheet system and for 
establishing a correspondence between the characteristics of the body Z and its components 
Zi on the one hand, and the parameters of the continuum K and the sheets Ki on the other; 
consist,ency relationships are presented between the kinematic, deformation, and dynamic par- 
ameters; an example is given for obtaining the rheological relationships for the fundamental 
continuum K in the case of a thin el.astic laminar body; methods are discussed for constructing 
models for biological membranes and a rheological equation is presented for the axisymmetric 
bending of a lipid bilayer when there is mass transfer between the layers. 

2. I(inenatic and de~o~t~~ re~ut~~nsh~~s. 
We introduce Lagrange coordinate systems 3" and nia associated with the centres of 

masses of the continua K and K,(a= 1.2) on the surfaces K and Ki. The centres of mass 
of the elements da and dui (Fig.1) coincide, respectively, with the centres of mass of 
the parts dZ and dZi. Moreover, we introduce a coordinate system &", "corresponding 
normally" to the system nn on the surface K, on the surface Ki. To do this we assume that 
the point M$ (Fig.31 lying on the normal to the surface K drawn from the point M with 
coordinates q" has the coordinates &a E Ila. _ 

An arbitrary function Ai defined on the surface Ki, is predefined on the surface K 
according to the rule Ai (qa) = Ai (Eta), where if the function Al is computed per unit area 
of the surface Kt, then an appropriate quantity is introduced per unit area of the surface K: 

Ai = kiAi, ki = dcriJda (2.1) 

Therefore, the parameters characterizing the properties of the individual components Zi 
and defined initially on the sheets Ki are referred to a single coordinate system rla on the 
surface K. 

The centre of mass of the set of elements doi lies at the point M (Fig.31 so that the 
following equalities hold 

s 

r = r, ciri, 
i.x.sl 

C, = dmi/dm, dm = $ dmi 
i=l 

ri (V) =I ri (fi") = r (11”) + hi (TJa) n (2.3, 

where r, ri are, respectively, the radius-vectors of the surfaces K and & (Fig.3), ci is 
the mass concentration of the components Zi, dm and dmi are, respectively, the masses 
of the elements do and dui that equal the masses of the parts dZ and dZi (see Sect.l), n 
is the unit vector normal to the surface f(, hi is-the spacing between Ki and I( measured 
along the normal to the surface K, where hi > 0 if the surface Xi is located on the 
positive normal to I( and hi < 0 otherwise. 

In the case of numerical agreement of the values of the coordinate the systems qa and 

5i" have different basis vectors ra and r&, where the following consistency relationships 
hold by virtue of (2.31: 

(2.4) 

Here ao~t bag are components of the first and second metric tensors of the surface K and 
&p are components of the first metric tensor of the surface K1 in the system &a. 

Hence a connection is obtained between the strain tensor a&e = 'iz(a& -CL&,) for the 
system Ej" on the sheet ICI and the strain tensor w of the continuum K (here and 
henceforth the superscript Q denotes the quantity at the initial time 8") 



For the case of a thin body when all the quantities ht are small compared with the 
characteristic linear dimensions, this expression takes the simple form /IO/ 

&a@ =%b -@$a~ - h:b,&)= 8,~ -xi&p - hi~afi f Xi% E (2.5) 

xi = hi - h:, xaB = baB - b& 

Satisfying the identity @=qla (meaning that particles of the continua&are not 
shifted relative to the normal to I() for all i during the whole deformation process is the 
necessary and sufficient condition of the fact that a normal fibre remains rectilinear and 

normal to the surface K during deformation of the body Z. The tensor s&p here coincides 

identically with the strain tensor e&I for the system qtm characterizing the deformation 

of the continuum Xi. Therefore, the tensor ~~~6 characterizes the deformation of the sheet 
Ki under the condition of conservation of a normal fibre. 

An expression /g/ holds for the tensor eia$ in terms of the absolute displacement u$ 
of points of the sheet Ki .with constant coordinates Eta and displacements U," (Fig.41 
of the points Mtq with the constant coordinates ?ha relative to the points M,‘?, with 
the constant coordinates Eta (under the condition that the points M$ and Mtn agree at 
a given instant t): 

The absolute displacements of particles of the continuum Ki 

uin = Ui” + UiE 

(Fig.41 are 

The quantities Ui" characterize the deviation of the "prototype" COD” of the fibre 
CD normal to the surface K at a given instant from the normal no to the initial position 
K" of the surface K. For deformations with a normal fibre conserved U," = 0. 

Let us introduce the absolute velocities of the continua K and Kt (that coincide with 
the velocities of the centres of mass of the parts dZ and dZf) as the velocities of points 
with the constant coordinates na and rha respectively. The relative motion of the 
continua Ki and I( reflecting the motion of the components Zi relative to the common centre 
of mass is characterized by the velocity wj'l = vt -v, where 

w$ = wi+wie, w$ = v,E-VI Wi = vi -v,f (2.6) 

and v,E is the absolute velocity of the points M,f with the constant coordinates Eta; Wi 
is the velocity of motion of the particles of the continuum Ki along the surface Ki (relative 
to the point M$, that coincides with the particle at this time). The velocity w+ of 
motion of the point M$ relative to the point M can be expressed in terms of the parameter 
of the continuum K and the quantity hi. 

The consistency relationships for the strain rate tensor components of the continua K 
and Kt are obtained from (2.6). The connections between the derivatives with respect to the 
coordinates on the surfaces K and KS that are derived from (2.4) for the basis vectors, are 
used here. 

Because there are finite intervals (Fig.11 between the elements doi the velocity v 
of the common centre of mass lying on the element do is composed of the average mass velocity 
of the component motion and the velocity w of the displacement of the centre of mass because 
of the change in the mass concentrations Ci of the components Zi 

v =~c*vi+w (2.7) 

w= .z hi$_,p-~CCi$U=-.+j-)Wjt 
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where didt = ait% 1%~ is the individual derivative with respect to time fur the continuum !i. 
Here and everywhere henceforth, the summation is over the subscript i. 

Fig.4 

Fig.5 

There is no such effect in the three-dimensional mechanics of mixtures because the 
components are not separated in space. If it is assumed that the displacements of the common 
centre of mass are independent because of the motion of the components and because of the 
change in concentrations, (2.7) can be obtained from (2.2) for r‘ = con&. 

The change in concentrations cl is subject to the diffusion equations 

pdctldt = -kidivip, + rn:’ - elms (2.8) 

where p=dnl& is the surface density of the continuum K, In:* is the mass influx to 
the continuum Kt per unit time per unit area of the surface K (see (2.1)) m’ = xrnlC’ 

is the mass influx to the continuum K Pi = PiWi is the mass flux vector along the surface 
KI (pi = QW& is the surface density of the continuum A$), and divt is the surface 
divergence operator on the sheet Kg. Eg.12.81 is obtained from the equations of continuity 
for the continua X and fiti and the expressions for the derivatives of the quantity k, with 
respect to time 191. 

3. &MB& retatianships. Let us construct the surface $2 (Fig.51 by using the 
normals to the surface I( restored from the boundary L of a certain domain I: on the surface 
K. The surface Sr cuts parts Zs and 2~~ respectively from a three dimensional body 2 
and the components Z, and extracts a domain X1, bounded by the contour L, on the surface 
Ki. An elementary strip dSr. cutting the element dl,, out of the contour L, here 
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corresponds to an element dl, (Fig.5) with a unit tangential normal v. 
By virtue of the definitions in Sect.1 the systems of forces and moments acting on the 

parts Za' and ZsI% are eguivalent to analogous system of forces ana moments acting on the 
respective parts of the continua K and Kt included within the domains I: and &. 

We examine the forces and moments acting on the parts Zs and zzi from the rest of 
the whole body 2 and distributed over the side surface Ss. We reduce the appropriate 
systems of forces ana moments arriving at the elementary strip d& to the principal forces 
dP,V and dP,,, applied, respectively, to the elements dl, and dlf, and to the 
moments dM,, and dM,iV. We extract the additional moments d&f,,, and dMziVp that 
occur because of removal of the forces distributed along the strip dSx to the elements & 
and dli: respectively 

dl,, = d&v, + dMmp, dMz*, =dMzi% + dMzi, (3.9 

In order to satisfy the requirement of equivalence of the systems of forces and moments 
we should set 

pi dl, = dP*, M,I& = dM,v, Pivdli, = dPz<vr Mi, d&v = dM;i, 

where P,.,P~~ and I, Mi, are, respectively, the densities of the linear forces and 
moments for the continua K and K,. We note that by virtue of the definitions of the quantities 
dPIiV and dlL the quantities piV and Miv reflect not only the stress in the sheet 
Ki but alsa the appropriate forces and moments from the remaining continua. When there are 
no cross-forces and interaction moments of the components distributed over the surface Ss, 
then prv and M,, are the stress in the continuum K,. 

In conformity with (3.1) c the densities M, and Mivp of the additional moments 

M,= M,x,-t- Myp, Mi,=Mi,+Mi, 
are extracted. 

It can be shown by using the analysis of the partition of the strip d& by planes 
perpendicular to n that 

Myp = Zhi$& _t zhin X &vPvt hi, = d&]dk 

from which by using the equalities 

dpzy = xdpzi,., d%, = ~dMz<,,, 

we obtain the relationships 

(3.2) 

The components of the stress tensors ps", piPa and of the moments M@=, Mt@ and of 
transverse stress vector Pa, PI= and of the moments M",Miw are determined, respectively, 
for the continua K and Kj from the expansions 

Here nt is the unit normal vector to the surface &, pa, pt" and Ma, Mta are, respect- 
ively, the stresses and moments on length elements with normals ra and ri* (vectors of 
the mutual basis), where the following hold: 

p, =p"v=, Mv= M=v,, v =v,P 

The relationships 

resulting from (3.3) were obtained /lo/ under the condition that the quantities hl do not 
change along the surface K (it can here be shown that n* = n).., 

Consistency relationships between the remaining dynamic parameters (mass forces and 
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moments, etc.) were examined in /9/ and, in particular, relationships are obtained for 
appropriate additional moments that have a form analogous to (3.2). 

Because of the existence of additional moments associated with removal of the forces on 
the surfaces II and Ki, the stress tensors pc;o and pia% turn out to be non-symmetric 
for a broad class of cases, in contrast to the three-dimensional mechanics of continuous 
media. 

4. On obtaining the closing relationships. 
for the continuum K have the form 

The equations of motion and moments 

p dvfdt = V,pa + @ + me (u - v,) 

pdkjdt=r,xpa+V,M~iNi-(k,-kk)me 

(4.1) 

where V, is the surface covariant differentiation operator, IQ, and N are the surface densities 
of the external forces and moments, k is the density of the internal kinetic moment, and vDI 
and kM are the average-mass velocity and the density of the internal kinetic moment of 
particles flowing in from outside. Appropriate equations for the continuum Ki are analogous 
in form. 

The consistency relationships presented in Sects.2 and 3 enable rheologicaf relations 
to be obtained for the continuum K modelling the object Z as a whole on the basis of the 
rheological relationships for the continua Ki modelling the individual components 21. For 
instance, deformation with conservation of the normal fibre of a thin elastic layered body 
was examined in /lO/. It was assumed here that the individual layers do not resist bending 
deformations and can be simulated by using linearly elastic two-dimensional continua 

where Ap"yb are the surface elasticity coefficients, and p? are initial stress tensor 

components in the sheets Kt, si~=G’~~8&. 
These equalities are the closing relationships for the equilibrium equations for the 

sheets xi. 
Rheological relationships were obtained for the continuum X from (4.2) by using the 

consistency relationships (2.5) and (3.4) 

(4.3) 

where the last three equalities determine, respectively, the total initial stresses and 
moments in the sheets Ki and the effective elasticity coefficients, These relationships 
include the dependence of the stress and moments on the bending deformations xya (unlike 
the relationships (4.2) for the sheet &) and enable the resistance to bending of a laminar 
body because of tension and compression of the individual layers when there is no resistance 
to bending of the layers, to be modelled. 

The equalities (4.3) are the closing relationships for Eqs.(4.1) represented in coordinate 
form for v s vI G 0, P, G 0, N = 0, k ok, z 0. Utilization of the consistency relation- 
ships enables the stress and strain of the individual sheets Kt to be eliminated and enables 
the rheological constants of the continua KS to be taken into account. The relationships 
for the quantities xi characterizing the transverse strains of the object 2 should be 
obtained from additional considerations, for instance, from the condition of volume .incom- 
pressibility or an analysis of the interaction forces between the layers. It is possible 
to formulate problems in which xi ~0, which means conservation of the normal fibre length 
(as in the classical theory of shells). 

Interaction forces between the continua K, will enter into the expanded model. The 
necessary additional relationships for these quantities should be obtained from an analysis 
of the interactions between the components &. 

5. On mthods ~f~e~l~~a biotogicat ~~. Among the various kinds of 
biological membranes, the erythrocyte membrane is the most prevalent object of mechanical 
investigations. Depending on its mechanical properties are, for instance, blood viscosity, 
the ability for erythrocytes to pass through capillaries, the allowable operation time when 
using artifical blood circulation apparatus, etc. /ll, 12/. 
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The structural basis of the majority of biological membranes, and in particular the 
erythrocyte membrane (Fig.61, where 1 are proteins, 2 are lipids, 3 are protein 
cytoskeletons, and 4 are lycocalyx) is a bilayer consisting of lipid (fat) molecules, where 
the individual monolayers can be exchanged by molecules and have different mechanical 
properties. The liquid-crystal properties of the lipid bilayer permit parts of the included 
protein molecules to be displaced (diffused) in the plane of the membrane. The membrane 
thickness can change, for instance, under the action of Coulomb forces. 

A multisheet system modelling a biological membrane 
can, depending on the specific situation, consist of a 
different number of sheets. Thus, when studying the 
surface diffusion of proteins it is sufficient to 
differentiate two two-dimensional continua lying on one 
surface and corresponding to lipid and protein components. 
Such problems were solved for multicomponent interfacial 

Fig.6 

2 surfaces f/5/, say). 
To obtain the rheological relationships for the 

membrane as a whole, it is visibly meaningful to consider 
3 a system of four sheets separated by finite spacings and 

corresponding to two lipid monolayers (with the inclusion 
of appropriate protein components), an internal 
cytoskeleton and a glycocalyx. The first two sheets are 
two-dimensional viscous fluids and the other two are two- 
dimensional viscoelastic continua. 

within the framework of this examination, electrical phenomena in the membrane, mass 
transfer between layers, etc., as well as their connection with the mechanical behaviour of 
the membrane can be taken into account. 

The occurrence of effective viscoelasticity of the bilayer under bending due to mass 
trasfer directed at equilibration of the densities Pi of the monolayers is an example. In 
the axisymmetric case the rheological equation that connects the bending moment M and the 
bending defromation x of the lipid bilayer, has the form 

dMidt + Zh=Adxldt + 2yM + 4qyh=Ax = 0 (5.1) 

where h and A are, respectively, the thickness and surface elasticity coefficient of the 
individual monolayer (for simplicity the layer properties are assumed identical), and y and 
q are mass transfer parameters whose law is taken in the form 

d (dm,)idt = y (pa - ~1 - qph/R) do 

Here R is the radius of the surface K that is a part of a cylindrical surface by 
assumption. 

Eq.tS.1) is obtained from the relations (2.5), (3.4), (4.2) and (4.3) under the 
assumption that the layers are identical and do not slip relative to each other. 

The characteristic relaxation times in (5.1) are determined completely by the mass 
transfer parameters y and q. 
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CONDITIONS ON SURFACES OF DISCONTINUITY IN A RIGID-PLASTIC ANALYSIS?' 

YA.A. KAMENYARZH 

Relationships are established on the surfaces of discontinuity for 
a rigid plastic analysis of inhomogeneous bodies, particularly bodies 
with piecewise-continuous properties. They are derived as necessary 
conditions for the static and dynamic load coefficients to be equal. In 
the special case of homogeneous bodies they are identical with the 
well-known Hill conditions; the necessity of the latter is thereby 
established. The connection of the different formulations of extremal 
problems of limit load theory is discussed in deriving the 
relationships. The mechanical meaning of the relationships obtained and 
certain of their properties are examined. 

1. Ponrmtation of the problem. Conditions on surfaces of discontinuity in a 
rigid plastic analysis are examined in this paper from the viewpoint of limit load theory. 

The probZem of the limit load theory. Let a body occupy a domain D and be subjected 
to mass forces with density f and a surface load with density q applied to a part S, of the 
body surface. There is a set C, of allowable stresses for each point x of the body. The 
stress field that is an inner point of the set of allowable stress fields is called safe. 
The main question of limit load theory is to clarify whether or not it is possible to 
equilibrate a given load I= (f,q) and a safe stress field. 

The static extremal probtem. A field o of allowable stresses is called statically 
allowable for a load ml, m> 0, I = (f,q) if it equilibrates this load; in this case the 
number m, (u) = m is called the static coefficient of the load 1. The exact upper bound 
al = sup m, (u) is called the static limit coefficient of the load 1. The load ml can be 
equilibrated to a safe stress field for O,<m<al and it is impossible to equilibrate 
thus for m> al /l/. Therefore, to answer the fundamental question of limit load theory it 
is necessary to find or estimate the quantity al, that is called the safety factor of the 
load 1 also in connection with the assertion presented. 

Kinematic extremal problems. Kinematic extremal problems that are formulated in the 
following manner play an important part in finding the load safety factor. A dissipation 
function /2-b/ is associated with a set of allowable stresses C, (e is a symmetric tensor of 
the second rank) 

d(s; e) = d, (e) = sup {a,.e: a, E c,) (1.1) 

The strain rate e (u) and dissipation 
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